Mostrar el registro sencillo del ítem
dc.contributor.author | Ugarte Ontiveros, Darwin | |
dc.contributor.author | Aparicio de Guzman, Ruth Marcela | |
dc.date.accessioned | 2022-07-01T14:24:33Z | |
dc.date.available | 2022-07-01T14:24:33Z | |
dc.date.issued | 2020-10-02 | |
dc.identifier.issn | 2518-4431 | |
dc.identifier.uri | http://repositorio.upb.edu/handle/123456789/49 | |
dc.description.abstract | Verificar si los resultados de un modelo de regresión reflejan el patrón de los datos, o si los mismos se deben a unas cuantas observaciones atípicas (outliers) es un paso importante en el proceso de investigación empírica. Para este propósito resulta aún común apoyarse en procedimientos (estándares) que no son eficaces para este propósito, al sufrir del denominado “masking effect”, algunos de ellos sugeridos incluso en los libros tradicionales de econometría. El presente trabajo pretende alertar a la comunidad académica sobre el peligro de implementar estas técnicas estándares, mostrando el pésimo desempeño de las mismas. Asimismo, se sugiere aplicar otras técnicas más idóneas sugeridas en la literatura sobre “estadística robusta” para identificar outliers en el análisis multivariado. Para facilitar la aplicación de las mismas, el trabajo pone a disposición de la comunidad académica un programa en Stata del tipo do-file para identificar y categorizar outliers basado en el trabajo de [1]. Simulaciones de Monte Carlo dan evidencia de la aplicabilidad de la misma. | es_ES |
dc.language.iso | es | es_ES |
dc.subject | Outliers, Estadística Robusta, Análisis de Regresión, Stata. | es_ES |
dc.title | TÉCNICAS ROBUSTAS Y NO ROBUSTAS PARA IDENTIFICAR OUTLIERS EN EL ANÁLISIS DE REGRESIÓN | es_ES |
dc.title.alternative | ROBUST AND NONROBUST TECHNIQUES FOR IDENTIFYING OUTLIERS IN REGRESION ANALYSIS | es_ES |
dc.type | Other | es_ES |